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1 Abstract

Let n > 2 be a positive integer. This project aims to partition the set of integers
modulo n, denoted as Z,,, into multiplicative groups by considering two cases: when
n is square-free and when n is not square-free. By analyzing these cases, we can better
understand the structure of the multiplicative groups that form Z,,. Our primary tool in
this project relies on the Chinese Remainder Theorem (CRT).

2 Introduction

Writing a number as a prime factorization means composing it into a product of prime
factors. For any positive integer n > 2, it is known that n can be written uniquely as a
product of a power of prime numbers. An integer n is square-free if and only if p? is
not a factor of n for every prime factor p of n. For example, the integer n = 10 =2 x5
is square-free; However, the integer n = 12 = 22 x 3 is not square-free because it is
divisible by 22.

We recall the following definitions.

Definition 1. 1. A group (G, ) is a nonempty set of elements together with a bi-
nary operation x such that the following axioms are satisfied:

(a) Closure: For any two elements a,b € G, we have a xb € G.

(b) Associativity: The binary operation x is associative, meaning that for any
three elements a, b, and c in G, we have (a xb) x c = a * (b* ¢)

(c) Identity: There exists an element in G, denoted by e, such that for any
element a € G, we have exa=axe=a

(d) Inverse: For every element a € G, there exists an element, denoted by a™*,

suchthataxa ' =a lxa=e

2. A group (G, %) is called an abelian group if a xb = b * a forall a,b € G.

3. Werecall (Z,,+,.) is the set of integers modulo n, i.e., Z, = {0,1,....,n — 1},
where "+ is addition modulo n and ”-” is multiplication modulo n.

4. An element e of Z,, is called idempotent ife - e = €2 = e.

5. An element w € Z, is called nilpotent if there exists a positive integer m such
that w™ = 0in Z,.

6. If k,n > 1 are integers and k | n, then Dy, = {1 < a < n| ged(a,n) = k}.

Our primary tool in this project relies on the Chinese Remainder Theorem (CRT),
which provides a way to solve systems of linear congruence with pairwise relatively
prime (or coprime, meaning the GCD between the two numbers is 1) moduli. The
Chinese Remainder Theorem states that given a system of k linear congruencies of the
form:

x = ay (modmyq)

x = ag (mod my,)



Where the moduli mi, ms,...,my are pairwise relatively prime, there exists a
unique solution z, 0 < x < mym; ---my, that satisfies all the congruence’s at the
same time.

In this project, CRT will partition Z,, into multiplicative groups if n is square-
free. On the other hand, if n is not square-free, we construct all possible multiplicative
groups inside Z,,.

3 Main result

Definition 2. Ler n = pi"* ---pi*, i = 1,2,..k, where p, ..., pi, are distinct prime
numbers and o, ..., o € N. Each pi*, V1 < i < k, is called a perfect prime factor
of n. Assume m is a factor of n such that 1 < m < n and m is a product of distinct
perfect prime factors of n or m = 1. Then we say m is a perfect factor of n.

Example 3.0.1. Letn = 3° x 7' x 213 x 53, Then
1. 3%, 711,213 53 are perfect prime factors of n
2. 3% x T is a perfect factor of n

Letn = pi* ---pp*, i = 1,2, ..k, where p1, ..., pj, are distinct prime numbers and
ai, ..., € N. Then ¢(n) = (pJ* — p(lal_l)) e (ppt - p,(cak_l)) = | D], for the
definition of Dy, see the definition 2[6).

The following is a well-known result of an introductory number theory course.

Fact 3.0.1. Let n > 2 be a positive integer and k > 1 be a factor of n. Then |Dy,| =
o(n/k).
We have the following result.

Theorem 3.0.2. Let e be a nonzero idempotent of Z,,. Then eD1 is a multiplicative
group of Z,, with identity e.

Proof. We show closure. Let z = eu, y =eve eD; for some u,v € D;. Since D, is a
multiplicative group of Z,, with identity 1, we have uv =€ D;. Hence zy = euev =
euv = euv € eD;. e is the identity of eD;. Let x = eu € eD; for some u € D;.
Since u=t € Dy, we have (eu)(eu ! = e?uut =e? =e. Thusz™! =eu! € eD;.

Since (Z,,, .) is associative, eD; is associative. O

Theorem 3.0.3. Let e be an idempotent of Z,, such that e ¢ {0, 1}. Then the ged(e,n)
is a perfect factor of n

Proof. Suppose that € = e in Z,,. Then n | e(e — 1), Since e & {0, 1}, we conclude
that neither n | e nor n | (e — 1). Since ged(e,e — 1) = ged(e,1 —e) = 1, we
conclude that n = dh for some perfect factors d, h of n, where d # 1, h # 1, d | e,
and h | (e — 1). O

Given Theorem [3.0.3] to construct multiplicative groups in Z, with an identity
different from one, we only need to consider sets of the form Dy, where k is a perfect
factor of n.

Theorem 3.0.4. Let k,n > 2 be integers and suppose that k > 1 is a perfect factor
of n. Then Dy, = {1 < a < n|ged(a,n) = k} is a multiplicative group of Z,, with
identity ey, # 1 and of order ¢p(n/k). Furthermore, if Dy, is a multiplicative group of
Z,, with identity e, # 1, then Dy, = e D1.



Proof. First, we show that Dy, has an idempotent e; of Z,,. By the CRT, there exists
a unique ex, 1 < e < 7 such that e, = 0 (mod k) and e = 1 (mod ). Hence
n = k% | ex(er — 1). Note that k, 7 are perfect factors of n and gcd(k, 7) = 1. Thus
gcd(e,n) = k and eg, € Dy.

Letd € Dy. Since k | dand 7 | (ex — 1), we have n = k7 | d(ex — 1). Thus
exd = din Z,. Thus ey, is the identity of D.

We show that e, D1 = Dy. Let x € exD1. Hence, x = exd, such that d € D;.
Since ged(d,n) = 1 and ged(eg,n) = k, we have ged(exd,n) = ged(eg,n) = k.
Thus x € Dy. Lety € Dy. Setw =y + (ex, — 1). Let p be a prime factor of n. Since
y(ex —1) =0in Z,, and gcd(y,er, — 1) =1, wehave p | y orp | (e — 1), but p does
not divide both. Hence gcd(w,n) = 1. Thus w € D;. Since w = y+ (1 —ey), we have
erw = ek (y + (ex — 1)) = exy. Since ey is the identity of D and y € Dy, we have
y = exy = exw € erpD;. Thus e, D1 = Dy. Since exD; is a multiplicative group
of Z,, with an identity ej, by Theorem [3.0.2] we conclude that Dy, is a multiplicative
group of Z,, with an identity e. It is clear that | Dy| = ¢(n/k) by Fact|3.0.1 O

The following result gives the exact number of idempotents in Z,.

Theorem 3.0.5. Letn > 2, ID(Z,)={ec€ Z,|e? =e€ Z,},and M = |{d | d
is a perfect prime factor of n }|. Then |Id(Z,)| = 2™

Proof. Let e € 1d(Z,). Then by Theorem [3.0.2} e is 1 or e is a perfect prime factor
of n or a product of 2 perfect prime factors of n or - - - or a product of M — 1 perfect
prime factors of n or 0 = the product of all M perfect prime factors of n. Hence

a(Z) = () + () + () 5 (30) + () = 2 5

Example 3.0.2. Let n = 3% x 5 x 7°, the number of idempotents of Z,, is 2> = 8 by
Theorem|[3.0.5]

In the following example, we illustrate how to use the CRT to find all idempotents
in Z,

Example 3.0.3. Consider Zg3. We have n = 32 -7 = 63. Since n divides e?> — e =
e(e — 1), it follows that 3°> = 9 and 7 will divide either e or e — 1 by Theoremm
Therefore, we have:

3% | e(e — 1), so either 3* | e or 3% | (e — 1), and

7] e(e—1), soeither 7| eorT| (e—1).

This leads to 4 possible combinations.

1)e =0 (mod 3%)and e =0 (mod 7), or

2)e=0 (mod 3%)and e =1 (mod 7), or

3)e=1 (mod 3?)and e = 0 (mod 7), or

4)e=1 (mod 3?) ande =1 (mod 7)

Recall that an element z € Z,, is called a nilpotent element of Z,, if z™ = 0in Z,
for some positive integer m > 1. We have the following result.

Theorem 3.0.6. Let x € Z,,. Then x is a nilpotent of Z,, if and only if p | n for every
prime factor p of n. In particular, if n is square-free, 0 is the only nilpotent element of
Zn.

Proof. Let p be a prime factor of n. Assume x is a nilpotent element of Z,,. Thus
2™ = 01in Z,. Hence n | ™. Thus p | . Conversely, suppose that p | n for every
prime factor p of n. Then clearly, n | 2™ for some integer m > 1. Hence, if n is
square-free, then it is clear that O is the only nilpotent element of Z,,. O



3.1 Partition Z,, when n is square-free

Recall that n € Z7 is called square-free if n = qyqo...qx, where qqso...q;, are distinct
prime integers, e € Z,, is an idempotent Z,, iff €2 = e in Z,, iff €2 = e (mod n), and
w is called nilpotent in Z,, iff w™ = 0in Z,, iff w™ =0 (mod n). Also; recall that if
k| n,then Dy = {1 < a <n|gcd(a,n) =k}.

Theorem 3.1.1. If e is idempotent in Z,,, then 1 — e is also idempotent in Z,.

Proof. Suppose e is an idempotent in Z,,. Then ¢ = e in Z,,. It follows that (1—e¢)? =
1 — 2e + €2 = 1 — e. Therefore, (1 — e) is also idempotent in Z,,. O

Note that if n is a square-free integer, then every proper factor of n is a perfect
factor of n.

Theorem 3.1.2. Let n > 2 be a square-free integer and G = {Dy, | 1 < k < n and
k | n}. Then Dy, is a multiplicative group of Z,, with identity ey, for every proper factor
kofn, HNL = 0 for every H L € G, and Z} = UpeGF, i.e., Z} is the union of
disjoint multiplicative groups of Z,.

Proof. Since n is square free, every proper factor k > 1 of n is a perfect factor of
n. Hence Dy, is a multiplicative group of Z,, with identity ej, for every proper factor
k > 1 of n by Theorem[3.0.4] Let H,L € G. Then H = D, and L = D, for some
distinct perfect factors a, b of n. Hence, it is clear that H N L = (. Let ¢ € Z and
k = ged(c,n). Since k is a perfect factor of n, Dy, is a multiplicative group of Z,, and
¢ € Dy. Thus Z)) = UpegF, i.e., Z} is the union of disjoint multiplicative groups of
L. O

In the following example, we illustrate using the CRT and Theorem to con-
struct all multiplicative groups of Z3.

Example 3.1.1. Letn = 30 = 3 -5 - 2 is square-free. The goal is to obtain all the
Dy, multiplicative groups for each proper factor k of 30. The proper factors of 30 are
k =1,2,3,5,6,10,15. Each group will have an identity that is equal to one of the
idempotents of Zs.

The number of idempotents for Zsy is 23 = 8 by Theorem

Step 1: Find the multiplicative group D,
Di={a€eZ|1<a<30,gcd(a,30)=1} ={1,7,11,13,17,19,23,29}

Note that $(30) = (2 —1)2°- (3 —-1)3°- (5 —1)5° =8 = | D4 |
Step 2: Find identities of D using the CRT
Identity of Dg :



e=1 (mod 5)

Since we have linear congruences, we will begin with the steps of CRT:

I) Forn = p{* ---pp*, i = 1,2, ..k, let each n; = p§"* and each m; = n/n;

In our case,

ny =2, ne =3, n3=5m; =30/2=15 me =30/3 =10, and mg =30/5=06
11) Find the multiplicative inverse of each m; in Z,,, (meaning m;y; = 1 in Z,,,)

In our case,

a) 15y = lin Zy

Y1 = lin Z2

Y2 = lin Zg

c)bys =1in Zs

ys = lin Zs

II) Calculate e = r1miy1 + ...rimyy; (mod n), where each r; is the remain-
der of e (mod (n;)) (either 0 or 1 in our case). Hence since r1,12 = 0, eg =

ramsys (mod 30) = 6
Since 6 -5 = 0, the identity of Ds =1 —eg = 1 — 6 = —5 (mod 30) = 25
Identity of D1y

0 (mod 2)
1 (mod 3)
0 (mod 5)

(&
(&
€

Notethatry = r3 = 0, mg = 10, ro = land yo = 1. Hence e1g = romays (mod 30) =
10

Since 10 - 3 = 0, the identity of D3 is 1 — e;9p = —9 (mod 30) = 21

Identity of D15
e=1 (mod 2)
e=0 (mod 3)
e=0 (mod 5)
Note that ro = r3 = 0, my = 15, 1y = 1 and y1 = 1. Hence ez =

rimyy; (mod 30) = 15
Since 2 - 15 = 0, the identity of Dy is 1 — e;5 = —14 (mod 30) = 16
Step 3: Find the groups D;,

This is done by calculating Dy, = e, D1 = {e, -a | a € D1}, see Theoremm
In other words, multiply the identity of Dy, with every element in D;.

We get the following multiplicative groups of Z,:
Dy ={1,7,11,13,17,19,23,29}, e = 1 and | D1| = ¢(30) = 8.

Dy = {16,22,26,28,2,4,8,14}, e = 16 and | Ds| = ¢(30/2) = ¢(15) = 8.



D3 ={21,27,3,9}, e3 = 21 and | D3| = $(30/3) = #(10) = 4.
D5 = {25,5}, e5 = 25 and | D5| = ¢(30/5) = ¢(6) = 2.

D¢ = {6,12,18,24}, e = 6 and | Dg| = $(30/6) = ¢(5) = 4.
Dy = {10,20}, e10 = 10 and | D1p| = ¢(30/10) = ¢(3) = 2.
D5 = {15}, e15 = 15 and | D15] = ¢$(30/15) = ¢(2) = 1.
Thus we have, Z3, = D1 U Dy U D3 U Dg U Dyy.

3.2 Z, When n is not square-free

We start with the following example.

Example 3.2.1. Letn = 18 = 32 - 2. Then n is not square-free. By Theoremm
D+, Ds, and Dg are the only multiplicative groups of Z1s. Now 15 & D; for every
1€ {1,2,9}, bur 15 = 9+ 6. Note that 9 € Dy and 6 is a nilpotent element of Z1g by
Theorem[3.0.6]

The set of all nilpotent elements of Z,, is denoted by Nil(Z,,). We have the fol-
lowing result.

Theorem 3.2.1. Let n > 2 be an integer and assume that n is not square-free. Let
a € Z, suchthat a ¢ Nil(Z,). Suppose that a is not an element of every multiplicative
group of Z,. Then there is a multiplicative group Dy for some perfect factor d of n
such that a = f + w for some f € Dy and w € Nil(Z,),

Proof. Let a € Z,, such that a is not an element of every multiplicative group of Z,,.
Assume that ¢ ¢ Nil(R). Let e be the smallest nonzero idempotent of Z,, such that
k | e. Hence every prime factor p of e is a prime factor of a. Since e (1 —e) = 0
in Z, and ged(ex,l — ex) = 1, we conclude that w = a(l — e) € Nil(Z,) by
Theorem [3.0.6] Since 1 = (1 —¢) + e, we have a = a(1 —€) + ae = w + ef. Let
f = aeand d = ged(e,n). Then d is a perfect factor of n by Theorem [3.0.2] Hence
gcd(e,n) = ged(ae,n) = d and f = ae is an element of the multiplicative group
Dy of Z,. Thus a = f + w, for some f € Dy and w € Nil(Z,), where Dy is a
multiplicative group of Z,, for some perfect factor d of n. O

Example 3.2.2. Consider Zy3. By Theorem[3.0.6] Nil(Z1s) = {0,6,12} = DgU{0}.
By Theorems [3.0.3] we conclude that Dy, Dy, Dy are the only multiplicative
groups of Z1s. By using the CRT as in the previous section, we get the following
groups of Z13:

Dy ={1,5,7,11,13,17},e1 = 1,|D;| = $(18) = 6
Dy = {2,4,8,10,14,16}, e5 = 10, | D] = ¢(18/2) = ¢(9) = 6
Dy = {9},e9 = 9,|Do| = (18/9) = ¢(2) =1

Let a € Zyg such that a & (Nil(Z13) U D1 U Dy U D3 U Dyg). Then a € D3 =
{3,15}. Hence by Theorem[3.2.1) we have 3 = 9+ 12,9 € Dy, 12 € Nil(Z1s) and
15=9+6,9 € Dy,6 € Nil(Z1g).

Hence we have, Z13 = Nil(Z15) U D1 U Ds U D3 U Dy.



4 Example of Caley’s tables of multiplicative groups of

Zn,
(Dﬂﬁ'nmdlﬂ) 2(4|6|8
2 48|26
4 81642
6 2(4|16|8
8 62|84

(Dg, 'nmdﬁl) 3 |6 |9 (12|15 |18

3 9 [18|6 |15 |3 |12

6 18 (151219 (6 |3

9 6 |[12(18|3 |9 [15

12 15|19 |3 |18 |12

15 3 |6 |9 |12 (15|18

18 123 (15|16 (18 |9
(Dﬂ“mudﬁl) 7 |14

T 7 |14

14 14 |7

(Dg,imadgg) 2 |4 |8 14|16 |22 |26 |28
2 4 |8 |16(28 |2 |14 |22 |26
4 8 16|12 [26 |4 |28 |14 |22
8 16|12 (6 |22 |8 |26 |28 |14
14 28126(22(16 (14 |8 (4 |2
16 2 |4 |8 [14 |16 |22 |26 |28
22 14128 (26|18 |22 |14 |2 |16
26 2214|284 [26 |2 |16 |8
28 2622|142 [28|16 |8 |4




(DE; 'mmdﬂi_’]) 3 |9 |21|27

3 9 (273 |21

9 2712119 |3

21 3 (9 [21 |27

27 2114 |27 |9
(Ds;®mod3o) |5 |25

5 2515

25 5 |25

(-D& 'mndﬂﬂ) 6 (12|18 |24

6 6 |12 |18 |24

12 12124 |6 |18

18 1816 |24 |12

24 24|18 |12 |6

(Do, ®moass) |9 | 27

9 9 |27

27 2719

(D,i,-nmdgﬁj 4 |8 (1620|2832
4 1613228 (8 |4 |20
8 3228120 |16 |8 |4
16 2812014 |32 |16 |8
20 8 11632 |4 |20 |28
28 4 |8 [16 |20 |28 |32
32 2004 |8 |28 |32 |16




D2, .” 18

10

14

16

16

10

14

16

14

10

16

14

10

10

2

10

14

16

14

10

14

16

16

14

10

16

5 Conclusion

. In this project, we used the Chinese Remainder Theorem (CRT) to construct mul-
tiplicative groups of Z,, with an identity different from one. If n is square-free, we
showed that Z; is the union of disjoint multiplicative groups of Z,,. If n is not square-
free, we constructed all multiplicative groups of Z,, and showed that if an element
a € Z, \ Nil(Z,) such that a is not an element of every multiplicative group of
Zy, then there is a multiplicative group D, for some perfect factor d of n such that
x = f+ w forsome f € Dy and w € Nil(Z,), In the future, we will look at other

problems where the CRT applies.
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