Partition Z_n into multiplicative groups

Aline Jerman Supervised by Prof. Ayman Badawi

A senior project presented for the degree of Bachelor of Science in Mathematics

Department of Mathematics and Statistics The American University of Sharjah United Arab Emirates

1 Abstract

Let $n \ge 2$ be a positive integer. This project aims to partition the set of integers modulo n, denoted as Z_n , into multiplicative groups by considering two cases: when n is square-free and when n is not square-free. By analyzing these cases, we can better understand the structure of the multiplicative groups that form Z_n . Our primary tool in this project relies on the Chinese Remainder Theorem (CRT).

2 Introduction

Writing a number as a prime factorization means composing it into a product of prime factors. For any positive integer $n \ge 2$, it is known that n can be written uniquely as a product of a power of prime numbers. An integer n is square-free if and only if p^2 is not a factor of n for every prime factor p of n. For example, the integer $n = 10 = 2 \times 5$ is square-free; However, the integer $n = 12 = 2^2 \times 3$ is not square-free because it is divisible by 2^2 .

We recall the following definitions.

Definition 1. 1. A group (G, *) is a nonempty set of elements together with a binary operation * such that the following axioms are satisfied:

- (a) Closure: For any two elements $a, b \in G$, we have $a * b \in G$.
- (b) Associativity: The binary operation * is associative, meaning that for any three elements a, b, and c in G, we have (a * b) * c = a * (b * c)
- (c) Identity: There exists an element in G, denoted by e, such that for any element $a \in G$, we have e * a = a * e = a
- (d) Inverse: For every element $a \in G$, there exists an element, denoted by a^{-1} , such that $a * a^{-1} = a^{-1} * a = e$
- 2. A group (G, *) is called an abelian group if a * b = b * a for all $a, b \in G$.
- 3. We recall $(Z_n, +, .)$ is the set of integers modulo n, i.e., $Z_n = \{0, 1, ..., n 1\}$, where "+" is addition modulo n and "." is multiplication modulo n.
- 4. An element e of Z_n is called idempotent if $e \cdot e = e^2 = e$.
- 5. An element $w \in Z_n$ is called nilpotent if there exists a positive integer m such that $w^m = 0$ in Z_n .
- 6. If $k, n \ge 1$ are integers and $k \mid n$, then $D_k = \{1 \le a < n \mid gcd(a, n) = k\}$.

Our primary tool in this project relies on the Chinese Remainder Theorem (CRT), which provides a way to solve systems of linear congruence with pairwise relatively prime (or coprime, meaning the GCD between the two numbers is 1) moduli. The Chinese Remainder Theorem states that given a system of k linear congruencies of the form:

$$x \equiv a_1 \pmod{m_1}$$
$$\vdots$$
$$x \equiv a_k \pmod{m_k}$$

Where the moduli $m_1, m_2, ..., m_k$ are pairwise relatively prime, there exists a unique solution $x, 0 \le x < m_1 m_1 \cdots m_k$ that satisfies all the congruence's at the same time.

In this project, CRT will partition Z_n into multiplicative groups if n is square-free. On the other hand, if n is not square-free, we construct all possible multiplicative groups inside Z_n .

3 Main result

Definition 2. Let $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, i = 1, 2, ...k, where $p_1, ..., p_k$ are distinct prime numbers and $\alpha_1, ..., \alpha_k \in \mathbb{N}$. Each $p_i^{\alpha_i}$, $\forall 1 \leq i \leq k$, is called a **perfect prime factor** of n. Assume m is a factor of n such that $1 \leq m < n$ and m is a product of distinct perfect prime factors of n or m = 1. Then we say m is a **perfect factor** of n.

Example 3.0.1. Let $n = 3^5 \times 7^{11} \times 2^{13} \times 5^3$. Then

1. $3^5, 7^{11}, 2^{13}, 5^3$ are perfect prime factors of n

2. $3^5 \times 7^{11}$ is a perfect factor of n

Let $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, i = 1, 2, ...k, where $p_1, ..., p_k$ are distinct prime numbers and $\alpha_1, ..., \alpha_k \in \mathbb{N}$. Then $\phi(n) = (p_1^{\alpha_1} - p_1^{(\alpha_1 - 1)}) \cdots (p_k^{\alpha_k} - p_k^{(\alpha_k - 1)}) = |D_1|$, for the definition of D_k see the definition 2(6).

The following is a well-known result of an introductory number theory course.

Fact 3.0.1. Let $n \ge 2$ be a positive integer and $k \ge 1$ be a factor of n. Then $|D_k| = \phi(n/k)$.

We have the following result.

Theorem 3.0.2. Let e be a nonzero idempotent of Z_n . Then eD_1 is a multiplicative group of Z_n with identity e.

Proof. We show closure. Let x = eu, $y = ev \in eD_1$ for some $u, v \in D_1$. Since D_1 is a multiplicative group of Z_n with identity 1, we have $uv = \in D_1$. Hence $xy = euev = e^2uv = euv \in eD_1$. e is the identity of eD_1 . Let $x = eu \in eD_1$ for some $u \in D_1$. Since $u^{-1} \in D_1$, we have $(eu)(eu^{-1} = e^2uu^{-1} = e^2 = e$. Thus $x^{-1} = eu^{-1} \in eD_1$. Since $(Z_n, .)$ is associative, eD_1 is associative.

Theorem 3.0.3. Let e be an idempotent of Z_n such that $e \notin \{0, 1\}$. Then the gcd(e, n) is a perfect factor of n

Proof. Suppose that $e^2 = e$ in Z_n . Then $n \mid e(e-1)$, Since $e \notin \{0,1\}$, we conclude that neither $n \mid e$ nor $n \mid (e-1)$. Since gcd(e, e-1) = gcd(e, 1-e) = 1, we conclude that n = dh for some perfect factors d, h of n, where $d \neq 1, h \neq 1, d \mid e$, and $h \mid (e-1)$.

Given Theorem 3.0.3, to construct multiplicative groups in Z_n with an identity different from one, we only need to consider sets of the form D_k , where k is a perfect factor of n.

Theorem 3.0.4. Let $k, n \ge 2$ be integers and suppose that k > 1 is a perfect factor of n. Then $D_k = \{1 \le a < n | gcd(a, n) = k\}$ is a multiplicative group of Z_n with identity $e_k \ne 1$ and of order $\phi(n/k)$. Furthermore, if D_k is a multiplicative group of Z_n with identity $e_k \ne 1$, then $D_k = e_k D_1$. *Proof.* First, we show that D_k has an idempotent e_k of Z_n . By the CRT, there exists a unique e_k , $1 < e_k < n$ such that $e_k \equiv 0 \pmod{k}$ and $e_k \equiv 1 \pmod{\frac{n}{k}}$. Hence $n = k\frac{n}{k} \mid e_k(e_k - 1)$. Note that $k, \frac{n}{k}$ are perfect factors of n and $gcd(k, \frac{n}{k}) = 1$. Thus gcd(e, n) = k and $e_k \in D_k$.

Let $d \in D_k$. Since $k \mid d$ and $\frac{n}{k} \mid (e_k - 1)$, we have $n = k\frac{n}{k} \mid d(e_k - 1)$. Thus $e_k d = d$ in Z_n . Thus e_k is the identity of D.

We show that $e_kD_1 = D_k$. Let $x \in e_kD_1$. Hence, $x = e_kd$, such that $d \in D_1$. Since gcd(d, n) = 1 and $gcd(e_k, n) = k$, we have $gcd(e_kd, n) = gcd(e_k, n) = k$. Thus $x \in D_k$. Let $y \in D_k$. Set $w = y + (e_k - 1)$. Let p be a prime factor of n. Since $y(e_k - 1) = 0$ in Z_n and $gcd(y, e_k - 1) = 1$, we have $p \mid y$ or $p \mid (e_k - 1)$, but p does not divide both. Hence gcd(w, n) = 1. Thus $w \in D_1$. Since $w = y + (1 - e_k)$, we have $e_kw = e_k(y + (e_k - 1)) = e_ky$. Since e_k is the identity of D_K and $y \in D_k$, we have $y = e_ky = e_kw \in e_kD_1$. Thus $e_kD_1 = D_k$. Since e_kD_1 is a multiplicative group of Z_n with an identity e_k . It is clear that $|D_k| = \phi(n/k)$ by Fact 3.0.1.

The following result gives the exact number of idempotents in Z_n .

Theorem 3.0.5. Let $n \ge 2$, $ID(Z_n) = \{e \in Z_n \mid e^2 = e \in Z_n\}$, and $M = |\{d \mid d is a perfect prime factor of <math>n\}|$. Then $|Id(Z_n)| = 2^M$

Proof. Let $e \in Id(Z_n)$. Then by Theorem 3.0.2, e is 1 or e is a perfect prime factor of n or a product of 2 perfect prime factors of n or \cdots or a product of M-1 perfect prime factors of n or 0 = the product of all M perfect prime factors of n. Hence $|Id(Z_n)| = \binom{M}{0} + \binom{M}{1} + \binom{M}{2} + \cdots + \binom{M}{M-1} + \binom{M}{M} = 2^M$

Example 3.0.2. Let $n = 3^2 \times 5 \times 7^5$, the number of idempotents of Z_n is $2^3 = 8$ by Theorem 3.0.5

In the following example, we illustrate how to use the CRT to find all idempotents in \mathbb{Z}_n

Example 3.0.3. Consider Z_{63} . We have $n = 3^2 \cdot 7 = 63$. Since n divides $e^2 - e = e(e-1)$, it follows that $3^2 = 9$ and 7 will divide either e or e - 1 by Theorem 3.0.2. Therefore, we have:

 $3^2 \mid e(e-1)$, so either $3^2 \mid e \text{ or } 3^2 \mid (e-1)$, and $7 \mid e(e-1)$, so either $7 \mid e \text{ or } 7 \mid (e-1)$. This leads to 4 possible combinations. 1) $e \equiv 0 \pmod{3^2}$ and $e \equiv 0 \pmod{7}$, or 2) $e \equiv 0 \pmod{3^2}$ and $e \equiv 1 \pmod{7}$, or 3) $e \equiv 1 \pmod{3^2}$ and $e \equiv 0 \pmod{7}$, or 4) $e \equiv 1 \pmod{3^2}$ and $e \equiv 1 \pmod{7}$

Recall that an element $x \in Z_n$ is called a nilpotent element of Z_n if $x^m = 0$ in Z_n for some positive integer $m \ge 1$. We have the following result.

Theorem 3.0.6. Let $x \in Z_n$. Then x is a nilpotent of Z_n if and only if $p \mid n$ for every prime factor p of n. In particular, if n is square-free, 0 is the only nilpotent element of Z_n .

Proof. Let p be a prime factor of n. Assume x is a nilpotent element of Z_n . Thus $x^m = 0$ in Z_n . Hence $n \mid x^m$. Thus $p \mid x$. Conversely, suppose that $p \mid n$ for every prime factor p of n. Then clearly, $n \mid x^m$ for some integer $m \ge 1$. Hence, if n is square-free, then it is clear that 0 is the only nilpotent element of Z_n .

3.1 Partition Z_n when n is square-free

Recall that $n \in Z^+$ is called *square-free* if $n = q_1q_2...q_k$, where $q_1q_2...q_k$ are distinct prime integers, $e \in Z_n$ is an idempotent Z_n iff $e^2 = e$ in Z_n iff $e^2 \equiv e \pmod{n}$, and w is called nilpotent in Z_n iff $w^m = 0$ in Z_n iff $w^m \equiv 0 \pmod{n}$. Also; recall that if $k \mid n$, then $D_k = \{1 \le a < n \mid gcd(a, n) = k\}$.

Theorem 3.1.1. If e is idempotent in Z_n , then 1 - e is also idempotent in Z_n .

Proof. Suppose e is an idempotent in Z_n . Then $e^2 = e$ in Z_n . It follows that $(1-e)^2 = 1-2e+e^2 = 1-e$. Therefore, (1-e) is also idempotent in Z_n .

Note that if n is a square-free integer, then every proper factor of n is a perfect factor of n.

Theorem 3.1.2. Let $n \ge 2$ be a square-free integer and $G = \{D_k \mid 1 \le k < n \text{ and } k \mid n\}$. Then D_k is a multiplicative group of Z_n with identity e_k for every proper factor k of n, $H \cap L = \emptyset$ for every $H, L \in G$, and $Z_n^* = \bigcup_{F \in G} F$, i.e., Z_n^* is the union of disjoint multiplicative groups of Z_n .

Proof. Since *n* is square free, every proper factor $k \ge 1$ of *n* is a perfect factor of *n*. Hence D_k is a multiplicative group of Z_n with identity e_k for every proper factor $k \ge 1$ of *n* by Theorem 3.0.4. Let $H, L \in G$. Then $H = D_a$ and $L = D_b$ for some distinct perfect factors a, b of *n*. Hence, it is clear that $H \cap L = \emptyset$. Let $c \in Z_n^*$ and k = gcd(c, n). Since *k* is a perfect factor of *n*, D_k is a multiplicative group of Z_n and $c \in D_k$. Thus $Z_n^* = \bigcup_{F \in G} F$, i.e., Z_n^* is the union of disjoint multiplicative groups of Z_n .

In the following example, we illustrate using the CRT and Theorem 3.0.4 to construct all multiplicative groups of Z_{30} .

Example 3.1.1. Let $n = 30 = 3 \cdot 5 \cdot 2$ is square-free. The goal is to obtain all the D_k multiplicative groups for each proper factor k of 30. The proper factors of 30 are k = 1, 2, 3, 5, 6, 10, 15. Each group will have an identity that is equal to one of the idempotents of Z_{30} .

The number of idempotents for Z_{30} is $2^3 = 8$ by Theorem 3.0.6.

Step 1: Find the multiplicative group D_1

 $D_1 = \{a \in \mathbb{Z} \mid 1 \le a < 30, \gcd(a, 30) = 1\} = \{1, 7, 11, 13, 17, 19, 23, 29\}$

Note that $\phi(30) = (2-1)2^0 \cdot (3-1)3^0 \cdot (5-1)5^0 = 8 = |D_1|$

Step 2: Find identities of D_k using the CRT

Identity of D_6 :

$$e \equiv 0 \pmod{2}$$

$$e \equiv 0 \pmod{3}$$

$e \equiv 1 \pmod{5}$

Since we have linear congruences, we will begin with the steps of CRT: I) For $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, i = 1, 2, ...k, let each $n_i = p_i^{\alpha_i}$ and each $m_i = n/n_i$ In our case, $n_1 = 2, n_2 = 3, n_3 = 5, m_1 = 30/2 = 15, m_2 = 30/3 = 10, and m_3 = 30/5 = 6$ II) Find the multiplicative inverse of each m_i in Z_{n_i} (meaning $m_i y_i = 1$ in Z_{n_i}) In our case, $a) 15y_1 = 1$ in Z_2 $y_1 = 1$ in Z_2 $b) 10y_2 = 1$ in Z_3 $y_2 = 1$ in Z_3 $c) 6y_3 = 1$ in Z_5 III) Calculate $e = r_1 m_1 y_1 + ... r_i m_i y_i \pmod{n}$, where each r_i is the remain-

der of $e \pmod{(n_i)}$ (either 0 or 1 in our case). Hence since $r_1, r_2 = 0$, $e_6 = r_3m_3y_3 \pmod{30} = 6$

Since $6 \cdot 5 = 0$, the identity of $D_5 = 1 - e_6 = 1 - 6 = -5 \pmod{30} = 25$

Identity of D_{10} *:*

 $e \equiv 0 \pmod{2}$ $e \equiv 1 \pmod{3}$ $e \equiv 0 \pmod{5}$

Note that $r_1 = r_3 = 0$, $m_2 = 10$, $r_2 = 1$ and $y_2 = 1$. Hence $e_{10} = r_2 m_2 y_2 \pmod{30} = 10$

Since $10 \cdot 3 = 0$, the identity of D_3 is $1 - e_{10} = -9 \pmod{30} = 21$

Identity of D_{15} :

 $e \equiv 1 \pmod{2}$ $e \equiv 0 \pmod{3}$ $e \equiv 0 \pmod{5}$

Note that $r_2 = r_3 = 0$, $m_1 = 15$, $r_1 = 1$ and $y_1 = 1$. Hence $e_{15} = r_1 m_1 y_1 \pmod{30} = 15$

Since $2 \cdot 15 = 0$, the identity of D_2 is $1 - e_{15} = -14 \pmod{30} = 16$

Step 3: Find the groups D_k

This is done by calculating $D_k = e_k D_1 = \{e_k \cdot a \mid a \in D_1\}$, see Theorem 3.0.4. In other words, multiply the identity of D_k with every element in D_1 .

We get the following multiplicative groups of
$$Z_n$$
:
 $D_1 = \{1, 7, 11, 13, 17, 19, 23, 29\}, e_1 = 1 \text{ and } |D_1| = \phi(30) = 8.$
 $D_2 = \{16, 22, 26, 28, 2, 4, 8, 14\}, e_2 = 16 \text{ and } |D_2| = \phi(30/2) = \phi(15) = 8.$

 $D_{3} = \{21, 27, 3, 9\}, e_{3} = 21 \text{ and } |D_{3}| = \phi(30/3) = \phi(10) = 4.$ $D_{5} = \{25, 5\}, e_{5} = 25 \text{ and } |D_{5}| = \phi(30/5) = \phi(6) = 2.$ $D_{6} = \{6, 12, 18, 24\}, e_{6} = 6 \text{ and } |D_{6}| = \phi(30/6) = \phi(5) = 4.$ $D_{10} = \{10, 20\}, e_{10} = 10 \text{ and } |D_{10}| = \phi(30/10) = \phi(3) = 2.$ $D_{15} = \{15\}, e_{15} = 15 \text{ and } |D_{15}| = \phi(30/15) = \phi(2) = 1.$ Thus we have, $Z_{30}^{*} = D_{1} \cup D_{2} \cup D_{3} \cup D_{6} \cup D_{10}.$

3.2 Z_n When n is not square-free

We start with the following example.

Example 3.2.1. Let $n = 18 = 3^2 \cdot 2$. Then n is not square-free. By Theorem 3.0.4, D_1 , D_2 , and D_9 are the only multiplicative groups of Z_{18} . Now $15 \notin D_i$ for every $i \in \{1, 2, 9\}$, but 15 = 9 + 6. Note that $9 \in D_9$ and 6 is a nilpotent element of Z_{18} by Theorem 3.0.6.

The set of all nilpotent elements of Z_n is denoted by $Nil(Z_n)$. We have the following result.

Theorem 3.2.1. Let n > 2 be an integer and assume that n is not square-free. Let $a \in Z_n$ such that $a \notin Nil(Z_n)$. Suppose that a is not an element of every multiplicative group of Z_n . Then there is a multiplicative group D_d for some perfect factor d of n such that a = f + w for some $f \in D_d$ and $w \in Nil(Z_n)$,

Proof. Let $a \in Z_n$ such that a is not an element of every multiplicative group of Z_n . Assume that $a \notin Nil(R)$. Let e be the smallest nonzero idempotent of Z_n such that $k \mid e$. Hence every prime factor p of e is a prime factor of a. Since $e_k(1 - e_k) = 0$ in Z_n and $gcd(e_k, 1 - e_k) = 1$, we conclude that $w = a(1 - e) \in Nil(Z_n)$ by Theorem 3.0.6. Since 1 = (1 - e) + e, we have a = a(1 - e) + ae = w + ef. Let f = ae and d = gcd(e, n). Then d is a perfect factor of n by Theorem 3.0.2. Hence gcd(e, n) = gcd(ae, n) = d and f = ae is an element of the multiplicative group D_d of Z_n . Thus a = f + w, for some $f \in D_d$ and $w \in Nil(Z_n)$, where D_d is a multiplicative group of Z_n for some perfect factor d of n.

Example 3.2.2. Consider Z_{18} . By Theorem 3.0.6, $Nil(Z_{18}) = \{0, 6, 12\} = D_6 \cup \{0\}$. By Theorems 3.0.3, 3.0.4, we conclude that D_1, D_2, D_9 are the only multiplicative groups of Z_{18} . By using the CRT as in the previous section, we get the following groups of Z_{18} :

$$D_1 = \{1, 5, 7, 11, 13, 17\}, e_1 = 1, |D_1| = \phi(18) = 6$$
$$D_2 = \{2, 4, 8, 10, 14, 16\}, e_2 = 10, |D_2| = \phi(18/2) = \phi(9) = 6$$
$$D_9 = \{9\}, e_9 = 9, |D_9| = \phi(18/9) = \phi(2) = 1$$

Let $a \in Z_{18}$ such that $a \notin (Nil(Z_{18}) \cup D_1 \cup D_2 \cup D_3 \cup D_9)$. Then $a \in D_3 = \{3, 15\}$. Hence by Theorem 3.2.1, we have $3 = 9 + 12, 9 \in D_9, 12 \in Nil(Z_{18})$ and $15 = 9 + 6, 9 \in D_9, 6 \in Nil(Z_{18})$.

Hence we have, $Z_{18} = Nil(Z_{18}) \cup D_1 \cup D_2 \cup D_3 \cup D_9$.

4 Example of Caley's tables of multiplicative groups of Z_n

$(D_2, \bullet_{\text{mod10}})$	2	4	6	8
2	4	8	2	6
4	8	6	4	2
6	2	4	6	8
8	6	2	8	4

$(D_3, \bullet_{\mathrm{mod}21})$	3	6	9	12	15	18
3	9	18	6	15	3	12
6	18	15	12	9	6	3
9	6	12	18	3	9	15
12	15	9	3	18	12	6
15	3	6	9	12	15	18
18	12	3	15	6	18	9

$$\begin{array}{c|c|c} (D_7, \bullet_{mod21}) & 7 & 14 \\ \hline 7 & 7 & 14 \\ \hline 14 & 14 & 7 \\ \end{array}$$

$(D_2, \bullet_{\mathrm{mod}30})$	2	4	8	14	16	22	26	28
2	4	8	16	28	2	14	22	26
4	8	16	2	26	4	28	14	22
8	16	2	6	22	8	26	28	14
14	28	26	22	16	14	8	4	2
16	2	4	8	14	16	22	26	28
22	14	28	26	8	22	4	2	16
26	22	14	28	4	26	2	16	8
28	26	22	14	2	28	16	8	4

$(D_3, \bullet_{\mathrm{mod}30})$	3	9	21	27
3	9	27	3	21
9	27	21	9	3
21	3	9	21	27
27	21	4	27	9

$(D_5, \bullet_{\mathrm{mod}30})$	5	25
5	25	5
25	5	25

$(D_6, \bullet_{\mathrm{mod}30})$	6	12	18	24
6	6	12	18	24
12	12	24	6	18
18	18	6	24	12
24	24	18	12	6

	10	
9	27	
9	27	1
27	9	1
	9 9 27	9 27 9 27 27 9

		0				
$(D_4, \bullet_{\mathrm{mod}36})$	4	8	16	20	28	32
4	16	32	28	8	4	20
8	32	28	20	16	8	4
16	28	20	4	32	16	8
20	8	16	32	4	20	28
28	4	8	16	20	28	32
32	20	4	8	28	32	16

D2	,18	2	4	8	10	14	16
	2	4	8	16	2	10	14
	4	8	16	14	4	2	10
	8	16	14	10	8	4	2
	10	2	4	8	10	14	16
	14	10	2	4	14	16	8
	16	14	10	2	16	8	4

5 Conclusion

. In this project, we used the Chinese Remainder Theorem (CRT) to construct multiplicative groups of Z_n with an identity different from one. If n is square-free, we showed that Z_n^* is the union of disjoint multiplicative groups of Z_n . If n is not squarefree, we constructed all multiplicative groups of Z_n and showed that if an element $a \in Z_n \setminus Nil(Z_n)$ such that a is not an element of every multiplicative group of Z_n , then there is a multiplicative group D_d for some perfect factor d of n such that x = f + w for some $f \in D_d$ and $w \in Nil(Z_n)$, In the future, we will look at other problems where the CRT applies.

References

- [1] Ayman Badawi, Abstract Algebra Manual: Problems and Solutions, Nova Science Publications, USA, 2004.
- [2] Joseph A. Gallian, Contemporary Abstract Algebra, Brooks/Cole, USA, 2022.