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1 Abstract
Let n ≥ 2 be a positive integer. This project aims to partition the set of integers
modulo n, denoted as Zn, into multiplicative groups by considering two cases: when
n is square-free and when n is not square-free. By analyzing these cases, we can better
understand the structure of the multiplicative groups that form Zn. Our primary tool in
this project relies on the Chinese Remainder Theorem (CRT).

2 Introduction
Writing a number as a prime factorization means composing it into a product of prime
factors. For any positive integer n ≥ 2, it is known that n can be written uniquely as a
product of a power of prime numbers. An integer n is square-free if and only if p2 is
not a factor of n for every prime factor p of n. For example, the integer n = 10 = 2×5
is square-free; However, the integer n = 12 = 22 × 3 is not square-free because it is
divisible by 22.

We recall the following definitions.

Definition 1. 1. A group (G, ∗) is a nonempty set of elements together with a bi-
nary operation ∗ such that the following axioms are satisfied:

(a) Closure: For any two elements a, b ∈ G, we have a ∗ b ∈ G.

(b) Associativity: The binary operation ∗ is associative, meaning that for any
three elements a, b, and c in G, we have (a ∗ b) ∗ c = a ∗ (b ∗ c)

(c) Identity: There exists an element in G, denoted by e, such that for any
element a ∈ G, we have e ∗ a = a ∗ e = a

(d) Inverse: For every element a ∈ G, there exists an element, denoted by a−1,
such that a ∗ a−1 = a−1 ∗ a = e

2. A group (G, ∗) is called an abelian group if a ∗ b = b ∗ a for all a, b ∈ G.

3. We recall (Zn,+, .) is the set of integers modulo n, i.e., Zn = {0, 1, ..., n − 1},
where ”+” is addition modulo n and ”·” is multiplication modulo n.

4. An element e of Zn is called idempotent if e · e = e2 = e.

5. An element w ∈ Zn is called nilpotent if there exists a positive integer m such
that wm = 0 in Zn.

6. If k, n ≥ 1 are integers and k | n, then Dk = {1 ≤ a < n | gcd(a, n) = k}.

Our primary tool in this project relies on the Chinese Remainder Theorem (CRT),
which provides a way to solve systems of linear congruence with pairwise relatively
prime (or coprime, meaning the GCD between the two numbers is 1) moduli. The
Chinese Remainder Theorem states that given a system of k linear congruencies of the
form:

x ≡ a1 (mod m1)

...

x ≡ ak (mod mk)
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Where the moduli m1,m2, ...,mk are pairwise relatively prime, there exists a
unique solution x, 0 ≤ x < m1m1 · · ·mk that satisfies all the congruence’s at the
same time.

In this project, CRT will partition Zn into multiplicative groups if n is square-
free. On the other hand, if n is not square-free, we construct all possible multiplicative
groups inside Zn.

3 Main result
Definition 2. Let n = pα1

1 · · · pαk

k , i = 1, 2, ..k, where p1, ..., pk are distinct prime
numbers and α1, ..., αk ∈ N. Each pαi

i , ∀1 ≤ i ≤ k, is called a perfect prime factor
of n. Assume m is a factor of n such that 1 ≤ m < n and m is a product of distinct
perfect prime factors of n or m = 1. Then we say m is a perfect factor of n.

Example 3.0.1. Let n = 35 × 711 × 213 × 53. Then

1. 35, 711, 213, 53 are perfect prime factors of n

2. 35 × 711 is a perfect factor of n

Let n = pα1
1 · · · pαk

k , i = 1, 2, ..k, where p1, ..., pk are distinct prime numbers and
α1, ..., αk ∈ N. Then ϕ(n) = (pα1

1 − p
(α1−1)
1 ) · · · (pαk

k − p
(αk−1)
k ) = |D1|, for the

definition of Dk see the definition 2(6).
The following is a well-known result of an introductory number theory course.

Fact 3.0.1. Let n ≥ 2 be a positive integer and k ≥ 1 be a factor of n. Then |Dk| =
ϕ(n/k).

We have the following result.

Theorem 3.0.2. Let e be a nonzero idempotent of Zn. Then eD1 is a multiplicative
group of Zn with identity e.

Proof. We show closure. Let x = eu, y = ev∈ eD1 for some u, v ∈ D1. Since D1 is a
multiplicative group of Zn with identity 1, we have uv =∈ D1. Hence xy = euev =
e2uv = euv ∈ eD1. e is the identity of eD1. Let x = eu ∈ eD1 for some u ∈ D1.
Since u−1 ∈ D1, we have (eu)(eu−1 = e2uu−1 = e2 = e. Thus x−1 = eu−1 ∈ eD1.
Since (Zn, .) is associative, eD1 is associative.

Theorem 3.0.3. Let e be an idempotent of Zn such that e ̸∈ {0, 1}. Then the gcd(e, n)
is a perfect factor of n

Proof. Suppose that e2 = e in Zn. Then n | e(e − 1), Since e ̸∈ {0, 1}, we conclude
that neither n | e nor n | (e − 1). Since gcd(e, e − 1) = gcd(e, 1 − e) = 1, we
conclude that n = dh for some perfect factors d, h of n, where d ̸= 1, h ̸= 1, d | e,
and h | (e− 1).

Given Theorem 3.0.3, to construct multiplicative groups in Zn with an identity
different from one, we only need to consider sets of the form Dk, where k is a perfect
factor of n.

Theorem 3.0.4. Let k, n ≥ 2 be integers and suppose that k > 1 is a perfect factor
of n. Then Dk = {1 ≤ a < n|gcd(a, n) = k} is a multiplicative group of Zn with
identity ek ̸= 1 and of order ϕ(n/k). Furthermore, if Dk is a multiplicative group of
Zn with identity ek ̸= 1, then Dk = ekD1.

2



Proof. First, we show that Dk has an idempotent ek of Zn. By the CRT, there exists
a unique ek, 1 < ek < n such that ek ≡ 0 (mod k) and ek ≡ 1 (mod n

k ). Hence
n = k n

k | ek(ek − 1). Note that k, n
k are perfect factors of n and gcd(k, n

k ) = 1. Thus
gcd(e, n) = k and ek ∈ Dk.

Let d ∈ Dk. Since k | d and n
k | (ek − 1), we have n = k n

k | d(ek − 1). Thus
ekd = d in Zn. Thus ek is the identity of D.

We show that ekD1 = Dk. Let x ∈ ekD1. Hence, x = ekd, such that d ∈ D1.
Since gcd(d, n) = 1 and gcd(ek, n) = k, we have gcd(ekd, n) = gcd(ek, n) = k.
Thus x ∈ Dk. Let y ∈ Dk. Set w = y + (ek − 1). Let p be a prime factor of n. Since
y(ek − 1) = 0 in Zn and gcd(y, ek − 1) = 1, we have p | y or p | (ek − 1), but p does
not divide both. Hence gcd(w, n) = 1. Thus w ∈ D1. Since w = y+(1−ek), we have
ekw = ek(y + (ek − 1)) = eky. Since ek is the identity of DK and y ∈ Dk, we have
y = eky = ekw ∈ ekD1. Thus ekD1 = Dk. Since ekD1 is a multiplicative group
of Zn with an identity ek by Theorem 3.0.2, we conclude that Dk is a multiplicative
group of Zn with an identity ek. It is clear that |Dk| = ϕ(n/k) by Fact 3.0.1.

The following result gives the exact number of idempotents in Zn.

Theorem 3.0.5. Let n ≥ 2, ID(Zn) = {e ∈ Zn | e2 = e ∈ Zn}, and M = |{d | d
is a perfect prime factor of n }|. Then |Id(Zn)| = 2M

Proof. Let e ∈ Id(Zn). Then by Theorem 3.0.2, e is 1 or e is a perfect prime factor
of n or a product of 2 perfect prime factors of n or · · · or a product of M − 1 perfect
prime factors of n or 0 = the product of all M perfect prime factors of n. Hence
|Id(Zn)| =

(
M
0

)
+
(
M
1

)
+
(
M
2

)
+ · · ·+

(
M

M−1

)
+
(
M
M

)
= 2M

Example 3.0.2. Let n = 32 × 5 × 75, the number of idempotents of Zn is 23 = 8 by
Theorem 3.0.5

In the following example, we illustrate how to use the CRT to find all idempotents
in Zn

Example 3.0.3. Consider Z63. We have n = 32 · 7 = 63. Since n divides e2 − e =
e(e − 1), it follows that 32 = 9 and 7 will divide either e or e − 1 by Theorem 3.0.2.
Therefore, we have:

32 | e(e− 1), so either 32 | e or 32 | (e− 1), and
7 | e(e− 1), so either 7 | e or 7 | (e− 1).
This leads to 4 possible combinations.
1) e ≡ 0 (mod 32) and e ≡ 0 (mod 7), or
2) e ≡ 0 (mod 32) and e ≡ 1 (mod 7), or
3) e ≡ 1 (mod 32) and e ≡ 0 (mod 7), or
4) e ≡ 1 (mod 32) and e ≡ 1 (mod 7)

Recall that an element x ∈ Zn is called a nilpotent element of Zn if xm = 0 in Zn

for some positive integer m ≥ 1. We have the following result.

Theorem 3.0.6. Let x ∈ Zn. Then x is a nilpotent of Zn if and only if p | n for every
prime factor p of n. In particular, if n is square-free, 0 is the only nilpotent element of
Zn.

Proof. Let p be a prime factor of n. Assume x is a nilpotent element of Zn. Thus
xm = 0 in Zn. Hence n | xm. Thus p | x. Conversely, suppose that p | n for every
prime factor p of n. Then clearly, n | xm for some integer m ≥ 1. Hence, if n is
square-free, then it is clear that 0 is the only nilpotent element of Zn.
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3.1 Partition Zn when n is square-free
Recall that n ∈ Z+ is called square-free if n = q1q2...qk, where q1q2...qk are distinct
prime integers, e ∈ Zn is an idempotent Zn iff e2 = e in Zn iff e2 ≡ e (mod n), and
w is called nilpotent in Zn iff wm = 0 in Zn iff wm ≡ 0 (mod n). Also; recall that if
k | n, then Dk = {1 ≤ a < n | gcd(a, n) = k}.

Theorem 3.1.1. If e is idempotent in Zn, then 1− e is also idempotent in Zn.

Proof. Suppose e is an idempotent in Zn. Then e2 = e in Zn. It follows that (1−e)2 =
1− 2e+ e2 = 1− e. Therefore, (1− e) is also idempotent in Zn.

Note that if n is a square-free integer, then every proper factor of n is a perfect
factor of n.

Theorem 3.1.2. Let n ≥ 2 be a square-free integer and G = {Dk | 1 ≤ k < n and
k | n}. Then Dk is a multiplicative group of Zn with identity ek for every proper factor
k of n, H ∩ L = ∅ for every H,L ∈ G, and Z∗

n = ∪F∈GF , i.e., Z∗
n is the union of

disjoint multiplicative groups of Zn.

Proof. Since n is square free, every proper factor k ≥ 1 of n is a perfect factor of
n. Hence Dk is a multiplicative group of Zn with identity ek for every proper factor
k ≥ 1 of n by Theorem 3.0.4. Let H,L ∈ G. Then H = Da and L = Db for some
distinct perfect factors a, b of n. Hence, it is clear that H ∩ L = ∅. Let c ∈ Z∗

n and
k = gcd(c, n). Since k is a perfect factor of n, Dk is a multiplicative group of Zn and
c ∈ Dk. Thus Z∗

n = ∪F∈GF , i.e., Z∗
n is the union of disjoint multiplicative groups of

Zn.

In the following example, we illustrate using the CRT and Theorem 3.0.4 to con-
struct all multiplicative groups of Z30.

Example 3.1.1. Let n = 30 = 3 · 5 · 2 is square-free. The goal is to obtain all the
Dk multiplicative groups for each proper factor k of 30. The proper factors of 30 are
k = 1, 2, 3, 5, 6, 10, 15. Each group will have an identity that is equal to one of the
idempotents of Z30.

The number of idempotents for Z30 is 23 = 8 by Theorem 3.0.6.

Step 1: Find the multiplicative group D1

D1 = {a ∈ Z | 1 ≤ a < 30, gcd(a, 30) = 1} = {1, 7, 11, 13, 17, 19, 23, 29}

.
Note that ϕ(30) = (2− 1)20 · (3− 1)30 · (5− 1)50 = 8 = |D1|

Step 2: Find identities of Dk using the CRT

Identity of D6 :

e ≡ 0 (mod 2)

e ≡ 0 (mod 3)
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e ≡ 1 (mod 5)

Since we have linear congruences, we will begin with the steps of CRT:
I) For n = pα1

1 · · · pαk

k , i = 1, 2, ..k, let each ni = pαi
i and each mi = n/ni

In our case,
n1 = 2, n2 = 3, n3 = 5,m1 = 30/2 = 15, m2 = 30/3 = 10, and m3 = 30/5 = 6
II) Find the multiplicative inverse of each mi in Zni (meaning miyi = 1 in Zni )
In our case,
a) 15y1 = 1 in Z2

y1 = 1 in Z2

b) 10y2 = 1 in Z3

y2 = 1 in Z3

c) 6y3 = 1 in Z5

y3 = 1 in Z5

III) Calculate e = r1m1y1 + ...rimiyi (mod n), where each ri is the remain-
der of e (mod (ni)) (either 0 or 1 in our case). Hence since r1, r2 = 0, e6 =
r3m3y3 (mod 30) = 6

Since 6 · 5 = 0, the identity of D5 = 1− e6 = 1− 6 = −5 (mod 30) = 25

Identity of D10:

e ≡ 0 (mod 2)

e ≡ 1 (mod 3)

e ≡ 0 (mod 5)

Note that r1 = r3 = 0, m2 = 10, r2 = 1 and y2 = 1. Hence e10 = r2m2y2 (mod 30) =
10

Since 10 · 3 = 0, the identity of D3 is 1− e10 = −9 (mod 30) = 21

Identity of D15:

e ≡ 1 (mod 2)

e ≡ 0 (mod 3)

e ≡ 0 (mod 5)

Note that r2 = r3 = 0, m1 = 15, r1 = 1 and y1 = 1. Hence e15 =
r1m1y1 (mod 30) = 15

Since 2 · 15 = 0, the identity of D2 is 1− e15 = −14 (mod 30) = 16

Step 3: Find the groups Dk

This is done by calculating Dk = ekD1 = {ek · a | a ∈ D1}, see Theorem 3.0.4.
In other words, multiply the identity of Dk with every element in D1.

We get the following multiplicative groups of Zn:
D1 = {1, 7, 11, 13, 17, 19, 23, 29}, e1 = 1 and |D1| = ϕ(30) = 8.

D2 = {16, 22, 26, 28, 2, 4, 8, 14}, e2 = 16 and |D2| = ϕ(30/2) = ϕ(15) = 8.
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D3 = {21, 27, 3, 9}, e3 = 21 and |D3| = ϕ(30/3) = ϕ(10) = 4.

D5 = {25, 5}, e5 = 25 and |D5| = ϕ(30/5) = ϕ(6) = 2.

D6 = {6, 12, 18, 24}, e6 = 6 and |D6| = ϕ(30/6) = ϕ(5) = 4.

D10 = {10, 20}, e10 = 10 and |D10| = ϕ(30/10) = ϕ(3) = 2.

D15 = {15}, e15 = 15 and |D15| = ϕ(30/15) = ϕ(2) = 1.

Thus we have, Z∗
30 = D1 ∪D2 ∪D3 ∪D6 ∪D10.

3.2 Zn When n is not square-free
We start with the following example.

Example 3.2.1. Let n = 18 = 32 · 2. Then n is not square-free. By Theorem 3.0.4,
D1, D2, and D9 are the only multiplicative groups of Z18. Now 15 ̸∈ Di for every
i ∈ {1, 2, 9}, but 15 = 9 + 6. Note that 9 ∈ D9 and 6 is a nilpotent element of Z18 by
Theorem 3.0.6.

The set of all nilpotent elements of Zn is denoted by Nil(Zn). We have the fol-
lowing result.

Theorem 3.2.1. Let n > 2 be an integer and assume that n is not square-free. Let
a ∈ Zn such that a ̸∈ Nil(Zn). Suppose that a is not an element of every multiplicative
group of Zn. Then there is a multiplicative group Dd for some perfect factor d of n
such that a = f + w for some f ∈ Dd and w ∈ Nil(Zn),

Proof. Let a ∈ Zn such that a is not an element of every multiplicative group of Zn.
Assume that a ̸∈ Nil(R). Let e be the smallest nonzero idempotent of Zn such that
k | e. Hence every prime factor p of e is a prime factor of a. Since ek(1 − ek) = 0
in Zn and gcd(ek, 1 − ek) = 1, we conclude that w = a(1 − e) ∈ Nil(Zn) by
Theorem 3.0.6. Since 1 = (1 − e) + e, we have a = a(1 − e) + ae = w + ef . Let
f = ae and d = gcd(e, n). Then d is a perfect factor of n by Theorem 3.0.2. Hence
gcd(e, n) = gcd(ae, n) = d and f = ae is an element of the multiplicative group
Dd of Zn. Thus a = f + w, for some f ∈ Dd and w ∈ Nil(Zn), where Dd is a
multiplicative group of Zn for some perfect factor d of n.

Example 3.2.2. Consider Z18. By Theorem 3.0.6, Nil(Z18) = {0, 6, 12} = D6∪{0}.
By Theorems 3.0.3, 3.0.4, we conclude that D1, D2, D9 are the only multiplicative
groups of Z18. By using the CRT as in the previous section, we get the following
groups of Z18:

D1 = {1, 5, 7, 11, 13, 17}, e1 = 1, |D1| = ϕ(18) = 6

D2 = {2, 4, 8, 10, 14, 16}, e2 = 10, |D2| = ϕ(18/2) = ϕ(9) = 6

D9 = {9}, e9 = 9, |D9| = ϕ(18/9) = ϕ(2) = 1

Let a ∈ Z18 such that a ̸∈ (Nil(Z18) ∪ D1 ∪ D2 ∪ D3 ∪ D9). Then a ∈ D3 =
{3, 15}. Hence by Theorem 3.2.1, we have 3 = 9 + 12, 9 ∈ D9, 12 ∈ Nil(Z18) and
15 = 9 + 6, 9 ∈ D9, 6 ∈ Nil(Z18).

Hence we have, Z18 = Nil(Z18) ∪D1 ∪D2 ∪D3 ∪D9.
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4 Example of Caley’s tables of multiplicative groups of
Zn
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5 Conclusion
. In this project, we used the Chinese Remainder Theorem (CRT) to construct mul-
tiplicative groups of Zn with an identity different from one. If n is square-free, we
showed that Z∗

n is the union of disjoint multiplicative groups of Zn. If n is not square-
free, we constructed all multiplicative groups of Zn and showed that if an element
a ∈ Zn \ Nil(Zn) such that a is not an element of every multiplicative group of
Zn, then there is a multiplicative group Dd for some perfect factor d of n such that
x = f + w for some f ∈ Dd and w ∈ Nil(Zn), In the future, we will look at other
problems where the CRT applies.
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