Partition Z_{n} into multiplicative groups

Aline Jerman
Supervised by Prof. Ayman Badawi

1 Abstract

Let $n \geq 2$ be a positive integer. This project aims to partition the set of integers modulo n, denoted as Z_{n}, into multiplicative groups by considering two cases: when n is square-free and when n is not square-free. By analyzing these cases, we can better understand the structure of the multiplicative groups that form Z_{n}. Our primary tool in this project relies on the Chinese Remainder Theorem (CRT).

2 Introduction

Writing a number as a prime factorization means composing it into a product of prime factors. For any positive integer $n \geq 2$, it is known that n can be written uniquely as a product of a power of prime numbers. An integer n is square-free if and only if p^{2} is not a factor of n for every prime factor p of n. For example, the integer $n=10=2 \times 5$ is square-free; However, the integer $n=12=2^{2} \times 3$ is not square-free because it is divisible by 2^{2}.

We recall the following definitions.
Definition 1. 1. A group $(G, *)$ is a nonempty set of elements together with a binary operation $*$ such that the following axioms are satisfied:
(a) Closure: For any two elements $a, b \in G$, we have $a * b \in G$.
(b) Associativity: The binary operation $*$ is associative, meaning that for any three elements a, b, and c in G, we have $(a * b) * c=a *(b * c)$
(c) Identity: There exists an element in G, denoted by e, such that for any element $a \in G$, we have $e * a=a * e=a$
(d) Inverse: For every element $a \in G$, there exists an element, denoted by a^{-1}, such that $a * a^{-1}=a^{-1} * a=e$
2. A group $(G, *)$ is called an abelian group if $a * b=b * a$ for all $a, b \in G$.
3. We recall $\left(Z_{n},+,.\right)$ is the set of integers modulo n, i.e., $Z_{n}=\{0,1, \ldots, n-1\}$, where " + " is addition modulo n and "." is multiplication modulo n.
4. An element e of Z_{n} is called idempotent if $e \cdot e=e^{2}=e$.
5. An element $w \in Z_{n}$ is called nilpotent if there exists a positive integer m such that $w^{m}=0$ in Z_{n}.
6. If $k, n \geq 1$ are integers and $k \mid n$, then $D_{k}=\{1 \leq a<n \mid \operatorname{gcd}(a, n)=k\}$.

Our primary tool in this project relies on the Chinese Remainder Theorem (CRT), which provides a way to solve systems of linear congruence with pairwise relatively prime (or coprime, meaning the GCD between the two numbers is 1) moduli. The Chinese Remainder Theorem states that given a system of k linear congruencies of the form:

$$
\begin{gathered}
x \equiv a_{1}\left(\bmod m_{1}\right) \\
\vdots \\
x \equiv a_{k}\left(\bmod m_{k}\right)
\end{gathered}
$$

Where the moduli $m_{1}, m_{2}, \ldots, m_{k}$ are pairwise relatively prime, there exists a unique solution $x, 0 \leq x<m_{1} m_{1} \cdots m_{k}$ that satisfies all the congruence's at the same time.

In this project, CRT will partition Z_{n} into multiplicative groups if n is squarefree. On the other hand, if n is not square-free, we construct all possible multiplicative groups inside Z_{n}.

3 Main result

Definition 2. Let $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}, i=1,2, . . k$, where p_{1}, \ldots, p_{k} are distinct prime numbers and $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{N}$. Each $p_{i}^{\alpha_{i}}, \forall 1 \leq i \leq k$, is called a perfect prime factor of n. Assume m is a factor of n such that $1 \leq m<n$ and m is a product of distinct perfect prime factors of n or $m=1$. Then we say m is a perfect factor of n.
Example 3.0.1. Let $n=3^{5} \times 7^{11} \times 2^{13} \times 5^{3}$. Then

1. $3^{5}, 7^{11}, 2^{13}, 5^{3}$ are perfect prime factors of n
2. $3^{5} \times 7^{11}$ is a perfect factor of n

Let $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}, i=1,2, . . k$, where p_{1}, \ldots, p_{k} are distinct prime numbers and $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{N}$. Then $\phi(n)=\left(p_{1}^{\alpha_{1}}-p_{1}^{\left(\alpha_{1}-1\right)}\right) \cdots\left(p_{k}^{\alpha_{k}}-p_{k}^{\left(\alpha_{k}-1\right)}\right)=\left|D_{1}\right|$, for the definition of D_{k} see the definition 2(6).

The following is a well-known result of an introductory number theory course.
Fact 3.0.1. Let $n \geq 2$ be a positive integer and $k \geq 1$ be a factor of n. Then $\left|D_{k}\right|=$ $\phi(n / k)$.

We have the following result.
Theorem 3.0.2. Let e be a nonzero idempotent of Z_{n}. Then $e D_{1}$ is a multiplicative group of Z_{n} with identity e.
Proof. We show closure. Let $x=e u, \mathrm{y}=\mathrm{ev} \in e D_{1}$ for some $u, v \in D_{1}$. Since D_{1} is a multiplicative group of Z_{n} with identity 1 , we have $u v=\in D_{1}$. Hence $x y=$ euev $=$ $e^{2} u v=e u v \in e D_{1} . e$ is the identity of $e D_{1}$. Let $x=e u \in e D_{1}$ for some $u \in D_{1}$. Since $u^{-1} \in D_{1}$, we have $(e u)\left(e u^{-1}=e^{2} u u^{-1}=e^{2}=e\right.$. Thus $x^{-1}=e u^{-1} \in e D_{1}$. Since ($\left.Z_{n},.\right)$ is associative, $e D_{1}$ is associative.

Theorem 3.0.3. Let e be an idempotent of Z_{n} such that $e \notin\{0,1\}$. Then the $\operatorname{gcd}(e, n)$ is a perfect factor of n

Proof. Suppose that $e^{2}=e$ in Z_{n}. Then $n \mid e(e-1)$, Since $e \notin\{0,1\}$, we conclude that neither $n \mid e$ nor $n \mid(e-1)$. Since $\operatorname{gcd}(e, e-1)=\operatorname{gcd}(e, 1-e)=1$, we conclude that $n=d h$ for some perfect factors d, h of n, where $d \neq 1, h \neq 1, d \mid e$, and $h \mid(e-1)$.

Given Theorem 3.0.3, to construct multiplicative groups in Z_{n} with an identity different from one, we only need to consider sets of the form D_{k}, where k is a perfect factor of n.

Theorem 3.0.4. Let $k, n \geq 2$ be integers and suppose that $k>1$ is a perfect factor of n. Then $D_{k}=\{1 \leq a<n \mid g c d(a, n)=k\}$ is a multiplicative group of Z_{n} with identity $e_{k} \neq 1$ and of order $\phi(n / k)$. Furthermore, if D_{k} is a multiplicative group of Z_{n} with identity $e_{k} \neq 1$, then $D_{k}=e_{k} D_{1}$.

Proof. First, we show that D_{k} has an idempotent e_{k} of Z_{n}. By the CRT, there exists a unique $e_{k}, 1<e_{k}<n$ such that $e_{k} \equiv 0(\bmod k)$ and $e_{k} \equiv 1\left(\bmod \frac{n}{k}\right)$. Hence $\left.n=k \frac{n}{k} \right\rvert\, e_{k}\left(e_{k}-1\right)$. Note that $k, \frac{n}{k}$ are perfect factors of n and $\operatorname{gcd}\left(k, \frac{n}{k}\right)=1$. Thus $\operatorname{gcd}(e, n)=k$ and $e_{k} \in D_{k}$.

Let $d \in D_{k}$. Since $k \mid d$ and $\left.\frac{n}{k} \right\rvert\,\left(e_{k}-1\right)$, we have $\left.n=k \frac{n}{k} \right\rvert\, d\left(e_{k}-1\right)$. Thus $e_{k} d=d$ in Z_{n}. Thus e_{k} is the identity of D.

We show that $e_{k} D_{1}=D_{k}$. Let $x \in e_{k} D_{1}$. Hence, $x=e_{k} d$, such that $d \in D_{1}$. Since $\operatorname{gcd}(d, n)=1$ and $\operatorname{gcd}\left(e_{k}, n\right)=k$, we have $\operatorname{gcd}\left(e_{k} d, n\right)=\operatorname{gcd}\left(e_{k}, n\right)=k$. Thus $x \in D_{k}$. Let $y \in D_{k}$. Set $w=y+\left(e_{k}-1\right)$. Let p be a prime factor of n. Since $y\left(e_{k}-1\right)=0$ in Z_{n} and $\operatorname{gcd}\left(y, e_{k}-1\right)=1$, we have $p \mid y$ or $p \mid\left(e_{k}-1\right)$, but p does not divide both. Hence $\operatorname{gcd}(w, n)=1$. Thus $w \in D_{1}$. Since $w=y+\left(1-e_{k}\right)$, we have $e_{k} w=e_{k}\left(y+\left(e_{k}-1\right)\right)=e_{k} y$. Since e_{k} is the identity of D_{K} and $y \in D_{k}$, we have $y=e_{k} y=e_{k} w \in e_{k} D_{1}$. Thus $e_{k} D_{1}=D_{k}$. Since $e_{k} D_{1}$ is a multiplicative group of Z_{n} with an identity e_{k} by Theorem 3.0.2, we conclude that D_{k} is a multiplicative group of Z_{n} with an identity e_{k}. It is clear that $\left|D_{k}\right|=\phi(n / k)$ by Fact 3.0.1.

The following result gives the exact number of idempotents in Z_{n}.
Theorem 3.0.5. Let $n \geq 2, I D\left(Z_{n}\right)=\left\{e \in Z_{n} \mid e^{2}=e \in Z_{n}\right\}$, and $M=\mid\{d \mid d$ is a perfect prime factor of $n\} \mid$. Then $\left|\operatorname{Id}\left(Z_{n}\right)\right|=2^{M}$

Proof. Let $e \in \operatorname{Id}\left(Z_{n}\right)$. Then by Theorem 3.0.2, e is 1 or e is a perfect prime factor of n or a product of 2 perfect prime factors of n or \cdots or a product of $M-1$ perfect prime factors of n or $0=$ the product of all M perfect prime factors of n. Hence $\left|\operatorname{Id}\left(Z_{n}\right)\right|=\binom{M}{0}+\binom{M}{1}+\binom{M}{2}+\cdots+\binom{M}{M-1}+\binom{M}{M}=2^{M}$

Example 3.0.2. Let $n=3^{2} \times 5 \times 7^{5}$, the number of idempotents of Z_{n} is $2^{3}=8$ by Theorem 3.0.5

In the following example, we illustrate how to use the CRT to find all idempotents in Z_{n}

Example 3.0.3. Consider Z_{63}. We have $n=3^{2} \cdot 7=63$. Since n divides $e^{2}-e=$ $e(e-1)$, it follows that $3^{2}=9$ and 7 will divide either e or $e-1$ by Theorem 3.0.2. Therefore, we have:
$3^{2} \mid e(e-1)$, so either $3^{2} \mid e$ or $3^{2} \mid(e-1)$, and
$7 \mid e(e-1)$, so either $7 \mid$ e or $7 \mid(e-1)$.
This leads to 4 possible combinations.

1) $e \equiv 0\left(\bmod 3^{2}\right)$ and $e \equiv 0(\bmod 7)$, or
2) $e \equiv 0\left(\bmod 3^{2}\right)$ and $e \equiv 1(\bmod 7)$, or
3) $e \equiv 1\left(\bmod 3^{2}\right)$ and $e \equiv 0(\bmod 7)$, or
4) $e \equiv 1\left(\bmod 3^{2}\right)$ and $e \equiv 1(\bmod 7)$

Recall that an element $x \in Z_{n}$ is called a nilpotent element of Z_{n} if $x^{m}=0$ in Z_{n} for some positive integer $m \geq 1$. We have the following result.
Theorem 3.0.6. Let $x \in Z_{n}$. Then x is a nilpotent of Z_{n} if and only if $p \mid n$ for every prime factor p of n. In particular, if n is square-free, 0 is the only nilpotent element of Z_{n}.

Proof. Let p be a prime factor of n. Assume x is a nilpotent element of Z_{n}. Thus $x^{m}=0$ in Z_{n}. Hence $n \mid x^{m}$. Thus $p \mid x$. Conversely, suppose that $p \mid n$ for every prime factor p of n. Then clearly, $n \mid x^{m}$ for some integer $m \geq 1$. Hence, if n is square-free, then it is clear that 0 is the only nilpotent element of Z_{n}.

3.1 Partition Z_{n} when n is square-free

Recall that $n \in Z^{+}$is called square-free if $n=q_{1} q_{2} \ldots q_{k}$, where $q_{1} q_{2} \ldots q_{k}$ are distinct prime integers, $e \in Z_{n}$ is an idempotent Z_{n} iff $e^{2}=e$ in Z_{n} iff $e^{2} \equiv e(\bmod n)$, and w is called nilpotent in Z_{n} iff $w^{m}=0$ in Z_{n} iff $w^{m} \equiv 0(\bmod n)$. Also; recall that if $k \mid n$, then $D_{k}=\{1 \leq a<n \mid \operatorname{gcd}(a, n)=k\}$.

Theorem 3.1.1. If e is idempotent in Z_{n}, then $1-e$ is also idempotent in Z_{n}.
Proof. Suppose e is an idempotent in Z_{n}. Then $e^{2}=e$ in Z_{n}. It follows that $(1-e)^{2}=$ $1-2 e+e^{2}=1-e$. Therefore, $(1-e)$ is also idempotent in Z_{n}.

Note that if n is a square-free integer, then every proper factor of n is a perfect factor of n.

Theorem 3.1.2. Let $n \geq 2$ be a square-free integer and $G=\left\{D_{k} \mid 1 \leq k<n\right.$ and $k \mid n\}$. Then D_{k} is a multiplicative group of Z_{n} with identity e_{k} for every proper factor k of $n, H \cap L=\emptyset$ for every $H, L \in G$, and $Z_{n}^{*}=\cup_{F \in G} F$, i.e., Z_{n}^{*} is the union of disjoint multiplicative groups of Z_{n}.

Proof. Since n is square free, every proper factor $k \geq 1$ of n is a perfect factor of n. Hence D_{k} is a multiplicative group of Z_{n} with identity e_{k} for every proper factor $k \geq 1$ of n by Theorem 3.0.4 Let $H, L \in G$. Then $H=D_{a}$ and $L=D_{b}$ for some distinct perfect factors a, b of n. Hence, it is clear that $H \cap L=\emptyset$. Let $c \in Z_{n}^{*}$ and $k=\operatorname{gcd}(c, n)$. Since k is a perfect factor of n, D_{k} is a multiplicative group of Z_{n} and $c \in D_{k}$. Thus $Z_{n}^{*}=\cup_{F \in G} F$, i.e., Z_{n}^{*} is the union of disjoint multiplicative groups of Z_{n}.

In the following example, we illustrate using the CRT and Theorem 3.0.4 to construct all multiplicative groups of Z_{30}.

Example 3.1.1. Let $n=30=3 \cdot 5 \cdot 2$ is square-free. The goal is to obtain all the D_{k} multiplicative groups for each proper factor k of 30 . The proper factors of 30 are $k=1,2,3,5,6,10,15$. Each group will have an identity that is equal to one of the idempotents of Z_{30}.

The number of idempotents for Z_{30} is $2^{3}=8$ by Theorem 3.0.6

Step 1: Find the multiplicative group D_{1}

$$
D_{1}=\{a \in \mathbb{Z} \mid 1 \leq a<30, \operatorname{gcd}(a, 30)=1\}=\{1,7,11,13,17,19,23,29\}
$$

Note that $\phi(30)=(2-1) 2^{0} \cdot(3-1) 3^{0} \cdot(5-1) 5^{0}=8=\left|D_{1}\right|$

Step 2: Find identities of D_{k} using the CRT

Identity of D_{6} :

$$
\begin{aligned}
& e \equiv 0 \quad(\bmod 2) \\
& e \equiv 0 \quad(\bmod 3)
\end{aligned}
$$

$$
e \equiv 1 \quad(\bmod 5)
$$

Since we have linear congruences, we will begin with the steps of CRT:
I) For $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}, i=1,2, . . k$, let each $n_{i}=p_{i}^{\alpha_{i}}$ and each $m_{i}=n / n_{i}$

In our case,
$n_{1}=2, n_{2}=3, n_{3}=5, m_{1}=30 / 2=15, m_{2}=30 / 3=10$, and $m_{3}=30 / 5=6$
II) Find the multiplicative inverse of each m_{i} in $Z_{n_{i}}$ (meaning $m_{i} y_{i}=1$ in $Z_{n_{i}}$)

In our case,
a) $15 y_{1}=1$ in Z_{2}
$y_{1}=1$ in Z_{2}
b) $10 y_{2}=1$ in Z_{3}
$y_{2}=1$ in Z_{3}
c) $6 y_{3}=1$ in Z_{5}
$y_{3}=1$ in Z_{5}
III) Calculate $e=r_{1} m_{1} y_{1}+\ldots r_{i} m_{i} y_{i}(\bmod n)$, where each r_{i} is the remainder of $e\left(\bmod \left(n_{i}\right)\right)$ (either 0 or 1 in our case). Hence since $r_{1}, r_{2}=0, e_{6}=$ $r_{3} m_{3} y_{3}(\bmod 30)=6$

Since $6 \cdot 5=0$, the identity of $D_{5}=1-e_{6}=1-6=-5(\bmod 30)=25$
Identity of D_{10} :

$$
\begin{array}{ll}
e \equiv 0 & (\bmod 2) \\
e \equiv 1 & (\bmod 3) \\
e \equiv 0 & (\bmod 5)
\end{array}
$$

Note that $r_{1}=r_{3}=0, m_{2}=10, r_{2}=1$ and $y_{2}=1$. Hence $e_{10}=r_{2} m_{2} y_{2}(\bmod 30)=$ 10

Since $10 \cdot 3=0$, the identity of D_{3} is $1-e_{10}=-9(\bmod 30)=21$
Identity of D_{15} :

$$
\begin{array}{ll}
e \equiv 1 & (\bmod 2) \\
e \equiv 0 & (\bmod 3) \\
e \equiv 0 & (\bmod 5)
\end{array}
$$

Note that $r_{2}=r_{3}=0, m_{1}=15, r_{1}=1$ and $y_{1}=1$. Hence $e_{15}=$ $r_{1} m_{1} y_{1}(\bmod 30)=15$

Since $2 \cdot 15=0$, the identity of D_{2} is $1-e_{15}=-14(\bmod 30)=16$

Step 3: Find the groups D_{k}

This is done by calculating $D_{k}=e_{k} D_{1}=\left\{e_{k} \cdot a \mid a \in D_{1}\right\}$, see Theorem 3.0.4 In other words, multiply the identity of D_{k} with every element in D_{1}.

We get the following multiplicative groups of Z_{n} :
$D_{1}=\{1,7,11,13,17,19,23,29\}, e_{1}=1$ and $\left|D_{1}\right|=\phi(30)=8$.
$D_{2}=\{16,22,26,28,2,4,8,14\}, e_{2}=16$ and $\left|D_{2}\right|=\phi(30 / 2)=\phi(15)=8$.
$D_{3}=\{21,27,3,9\}, e_{3}=21$ and $\left|D_{3}\right|=\phi(30 / 3)=\phi(10)=4$.
$D_{5}=\{25,5\}, e_{5}=25$ and $\left|D_{5}\right|=\phi(30 / 5)=\phi(6)=2$.
$D_{6}=\{6,12,18,24\}, e_{6}=6$ and $\left|D_{6}\right|=\phi(30 / 6)=\phi(5)=4$.
$D_{10}=\{10,20\}, e_{10}=10$ and $\left|D_{10}\right|=\phi(30 / 10)=\phi(3)=2$.
$D_{15}=\{15\}, e_{15}=15$ and $\left|D_{15}\right|=\phi(30 / 15)=\phi(2)=1$.
Thus we have, $Z_{30}^{*}=D_{1} \cup D_{2} \cup D_{3} \cup D_{6} \cup D_{10}$.

3.2 Z_{n} When n is not square-free

We start with the following example.
Example 3.2.1. Let $n=18=3^{2} \cdot 2$. Then n is not square-free. By Theorem 3.0.4 D_{1}, D_{2}, and D_{9} are the only multiplicative groups of Z_{18}. Now $15 \notin D_{i}$ for every $i \in\{1,2,9\}$, but $15=9+6$. Note that $9 \in D_{9}$ and 6 is a nilpotent element of Z_{18} by Theorem 3.0.6

The set of all nilpotent elements of Z_{n} is denoted by $\operatorname{Nil}\left(Z_{n}\right)$. We have the following result.

Theorem 3.2.1. Let $n>2$ be an integer and assume that n is not square-free. Let $a \in Z_{n}$ such that a $\notin \operatorname{Nil}\left(Z_{n}\right)$. Suppose that a is not an element of every multiplicative group of Z_{n}. Then there is a multiplicative group D_{d} for some perfect factor d of n such that $a=f+w$ for some $f \in D_{d}$ and $w \in \operatorname{Nil}\left(Z_{n}\right)$,

Proof. Let $a \in Z_{n}$ such that a is not an element of every multiplicative group of Z_{n}. Assume that $a \notin \operatorname{Nil(R)}$. Let e be the smallest nonzero idempotent of Z_{n} such that $k \mid e$. Hence every prime factor p of e is a prime factor of a. Since $e_{k}\left(1-e_{k}\right)=0$ in Z_{n} and $\operatorname{gcd}\left(e_{k}, 1-e_{k}\right)=1$, we conclude that $w=a(1-e) \in \operatorname{Nil}\left(Z_{n}\right)$ by Theorem 3.0.6 Since $1=(1-e)+e$, we have $a=a(1-e)+a e=w+e f$. Let $f=a e$ and $d=g c d(e, n)$. Then d is a perfect factor of n by Theorem 3.0.2. Hence $\operatorname{gcd}(e, n)=\operatorname{gcd}(a e, n)=d$ and $f=a e$ is an element of the multiplicative group D_{d} of Z_{n}. Thus $a=f+w$, for some $f \in D_{d}$ and $w \in \operatorname{Nil}\left(Z_{n}\right)$, where D_{d} is a multiplicative group of Z_{n} for some perfect factor d of n.

Example 3.2.2. Consider Z_{18}. By Theorem 3.0.6. $\operatorname{Nil}\left(Z_{18}\right)=\{0,6,12\}=D_{6} \cup\{0\}$. By Theorems 3.0.3, 3.0.4 we conclude that D_{1}, D_{2}, D_{9} are the only multiplicative groups of Z_{18}. By using the CRT as in the previous section, we get the following groups of Z_{18} :

$$
\begin{aligned}
& D_{1}=\{1,5,7,11,13,17\}, e_{1}=1,\left|D_{1}\right|=\phi(18)=6 \\
& D_{2}=\{2,4,8,10,14,16\}, e_{2}=10,\left|D_{2}\right|=\phi(18 / 2)=\phi(9)=6 \\
& D_{9}=\{9\}, e_{9}=9,\left|D_{9}\right|=\phi(18 / 9)=\phi(2)=1
\end{aligned}
$$

Let $a \in Z_{18}$ such that $a \notin\left(N i l\left(Z_{18}\right) \cup D_{1} \cup D_{2} \cup D_{3} \cup D_{9}\right)$. Then $a \in D_{3}=$ $\{3,15\}$. Hence by Theorem 3.2.1, we have $3=9+12,9 \in D_{9}, 12 \in \operatorname{Nil}\left(Z_{18}\right)$ and $15=9+6,9 \in D_{9}, 6 \in \operatorname{Nil}\left(Z_{18}\right)$.

Hence we have, $Z_{18}=\operatorname{Nil}\left(Z_{18}\right) \cup D_{1} \cup D_{2} \cup D_{3} \cup D_{9}$.

4 Example of Caley's tables of multiplicative groups of Z_{n}

$\left(D_{2}, \bullet_{\text {mod10 }}\right)$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$
$\mathbf{2}$	4	8	2	6
$\mathbf{4}$	8	6	4	2
$\mathbf{6}$	2	4	6	8
$\mathbf{8}$	6	2	8	4

$\left(D_{3}, \bullet_{\bmod 21}\right)$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{9}$	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{1 8}$
$\mathbf{3}$	9	18	6	15	3	12
$\mathbf{6}$	18	15	12	9	6	3
$\mathbf{9}$	6	12	18	3	9	15
$\mathbf{1 2}$	15	9	3	18	12	6
$\mathbf{1 5}$	3	6	9	12	15	18
$\mathbf{1 8}$	12	3	15	6	18	9

$\left(D_{7}, \bullet_{\bmod 21}\right)$	7	14
7	7	14
14	14	7

$\left(D_{2}, \bullet_{\text {mod } 30}\right)$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 2}$	$\mathbf{2 6}$	$\mathbf{2 8}$
$\mathbf{2}$	4	8	16	28	2	14	22	26
$\mathbf{4}$	8	16	2	26	4	28	14	22
$\mathbf{8}$	16	2	6	22	8	26	28	14
$\mathbf{1 4}$	28	26	22	16	14	8	4	2
$\mathbf{1 6}$	2	4	8	14	16	22	26	28
$\mathbf{2 2}$	14	28	26	8	22	4	2	16
$\mathbf{2 6}$	22	14	28	4	26	2	16	8
$\mathbf{2 8}$	26	22	14	2	28	16	8	4

$\left(D_{3}, \bullet_{\bmod 30}\right)$	3	9	21	27		
3	9	27	3	21		
9	27	21	9	3		
21	3	9	21	27		
27	21	4	27	9		
$\left(D_{5}, \bullet_{\bmod 30}\right)\|5\| 25$						
5	25	5				
25	5	25				
$\left(D_{6}, \bullet_{\bmod 30}\right)$ $\mathbf{6}$ $\mathbf{1 2}$ $\mathbf{1 8}$ $\mathbf{2 4}$ 6						
6	6	12	18	24		
12	12	24	6	18		
18	18	6	24	12		
24	24	18	12	6		
9	9	27				
27	27	9				
$\left(D_{4}, \bullet_{\bmod 36}\right) \mathbf{4}^{\mathbf{4}} \mathbf{8} \mathbf{8}$						
4	16	32	28	8	4	20
8	32	28	20	16	8	4
16	28	20	4	32	16	8
20	8	16	32	4	20	28
28	4	8	16	20	28	32
32	20	4	8	28	32	16

5 Conclusion

. In this project, we used the Chinese Remainder Theorem (CRT) to construct multiplicative groups of Z_{n} with an identity different from one. If n is square-free, we showed that Z_{n}^{*} is the union of disjoint multiplicative groups of Z_{n}. If n is not squarefree, we constructed all multiplicative groups of Z_{n} and showed that if an element $a \in Z_{n} \backslash \operatorname{Nil}\left(Z_{n}\right)$ such that a is not an element of every multiplicative group of Z_{n}, then there is a multiplicative group D_{d} for some perfect factor d of n such that $x=f+w$ for some $f \in D_{d}$ and $w \in \operatorname{Nil}\left(Z_{n}\right)$, In the future, we will look at other problems where the CRT applies.

References

[1] Ayman Badawi, Abstract Algebra Manual: Problems and Solutions, Nova Science Publications, USA, 2004.
[2] Joseph A. Gallian, Contemporary Abstract Algebra, Brooks/Cole, USA, 2022.

